In this short column, we will discuss the different types of inclusions present in steels and discuss their physical metallurgy. As property requirements increase, and the demands for lighter and stronger structures increase, steel makers are increasingly concerned with steel cleanliness. The fatigue, ductility, and impact behavior of steel is controlled by the volume fraction, size, type, and morphology of non-metallic inclusions \[1\] \[2\]. If the oxygen content of the steel is lowered (and with it the number of non-metallic inclusions), the life of a bearing can be extended nearly 30 times (Figure 1) \[3\].

For steel castings, the morphology is determined by the solidification of the steel. In wrought products, the shape of the inclusions is determined by how hard the inclusions are to the wrought matrix. This is shown in Figure 2.

CLASSIFICATION OF INCLUSIONS IN STEEL
Steel inclusions are classified according to the source. They are either indigenous or exogenous.

Indigenous Inclusions
Indigenous inclusions are formed during the deoxidation process or precipitated during solidification of the steel.

Deoxidation products
As the steel is deoxidized, titanium, aluminum, and silicon may be introduced to the molten steel. As the steel is transferred from the furnace to a ladle or tundish to a mold, or to a continuous caster, pickup of air during the transfer is virtually unavoidable. Typical inclusions of this type are Al$_2$O$_3$ or Silica (SiO$_2$).

Precipitated Inclusions
During solidification, the dissolved oxygen and nitrogen concentration increases, while the solubility of these elements decreases. Inclusions of alumina (Al$_2$O$_3$), silica (SiO$_2$), aluminum, and titanium nitride (AlN and TiN), and sulfide inclusions precipitate during solidification. The sulfide inclusions often precipitate on metal oxides present in the molten steel. If rare-earth additions are made in the ladle, then rare-earth oxides will also be formed.

Exogenous inclusions
These inclusions form from reoxidation and from mechanical erosion of the refractory. These can be large, and cause problems during machining. They are typically compound inclusions from interaction of the molten steel, slag, and refractory lining. They are often irregular in shape. They are often fewer in number than the smaller indigenous inclusions. Because these inclusions are larger, these inclusions act as large stress risers. They have a large effect on mechanical properties, such as fatigue and ductility.

Identifying inclusion size and distribution grows in importance as the demand for lighter weight and stronger materials grows.
lining is recommended [3].

Exogenous Inclusions from slag entainment

These large inclusions, generally containing CaO or MgO, are produced by turbulent mixing of the slag and molten steel. Often these inclusions are formed from the vortex that occurs as the molten metal is poured from the tundish to the mold (or continuous caster).

Exogenous Inclusions from erosion/corrosion of lining refractory

These inclusions are typically larger than other inclusions, and irregularly shaped. This type of inclusion is very common. They are composed of sand, dirt, refractory brickwork, or ceramic from nozzles. This can be minimized by using high purity Al₂O₃ and ZrO₂ refractory linings [6].

Exogenous Inclusions from chemical reactions

If the Ca treatment for inclusion control is performed incorrectly, then oxides can be produced. These are difficult to identify, because CaO inclusions may also be caused by slag mixed in the molten metal.

DETECTION OF INCLUSIONS

There are many ways of measuring and quantifying inclusions. Magnetic particle inspection [7] can be used to quantify the size and frequency of inclusions. Other methods are described by ASTM E45 [8], including macro-etching, magnetic particle inspection, and metallographic examination. Chemical determination of the inclusion type would use an SEM with EDS (Energy Dispersive Spectroscopy).

CONCLUSIONS

In this short article, inclusions that are commonly found in steel are classified as to source. As demands grow for lighter weight and stronger materials, the importance of inclusion size and distribution will only increase.

Should you have any comments for this article, or suggestions for further articles, please contact the editor or myself.

REFERENCES

ABOUT THE AUTHOR

D. Scott MacKenzie, Ph.D., FASM, is senior research scientist-metallurgy at Quaker Houghton. He is the past president of IFHTSE, and a member of the executive council of IFHTSE. For more information, go to www.houghtonintl.com.