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This article presents a new framework based on the ridge 
Mamdani fuzzy logic system for the mapping of process 
features to areal surface metrology parameters.
By OLUSAYO OBAJEMU, MAHDI MAHFOUF, MOSCHOS PAPANANIAS,  
THOMAS E MCLEAY, and VISAKAN KADIRKAMANATHAN

urface metrology parameters represent an important 
class of design variables, which can be controlled 
because they represent the DNA or fingerprint of the 
whole manufacturing chain as well as form important 

predictors of the manufactured component’s function(s). Existing 
approaches of analyzing these parameters are applicable to only a 
small subset of the parameters and, as such, tend to provide a narrow 
characterization of the manufacturing environment. This article 
presents a new machine learning approach for modeling the sur-
face metrology parameters of the manufactured components. Such 
a modeling approach can allow one to understand better and, as a 
result, control the manufacturing process so that the desired surface 
property can be achieved while manipulating the process conditions. 
The newly proposed approach uses a fuzzy-logic-based-learning algo-
rithm to map the extracted process features to the areal surface 
metrology parameters. It is fully transparent since it employs IF...
THEN statements to describe the relationships between the input 
space (in- process monitoring variables) and the output space (areal 
surface metrology parameters).

Furthermore, the algorithm includes a ridge penalty-based 
mechanism that allows the learning to be accurate while avoiding 
over-fitting. This new machine-learning framework was tested on a 
real-life industrial case study where it is required to predict the areal 
parameters of a manufacturing (machining) process from in-process 
data. Specifically, the case study involves a full factorial experimen-
tal design to manufacture 17 steel bearing housing parts fabricated 
from heat-treated EN24 steel bars. Validation results showed the 
ability of this new framework not only to predict accurately but 
also to generalize across different types of areal surface metrology 
parameters.

1 INTRODUCTION
Surface metrology, defined as the science of measurement of small-
scale characteristics (such as amplitude, spacing and shape of fea-
tures) in manufactured parts [1], forms an important part of the 
manufacturing processes for two main reasons. The first relates to 
the fact that surface metrology can be thought of as the fingerprint 
of the whole manufacturing chain. This fact can be used for control 
of the manufacturing process [2, 3]. The second reason is that sur-
face metrology can directly correlate with the manufactured com-
ponents function. Such information is useful for quality assessment 
and function prediction. 

Predicting the quality or how a manufactured component will 
function is particularly valuable in helping to meet today’s ever tight-
er budgetary and time constraints as well as the drive for right-first-
time production of materials [4]. Indeed, a mechanism for control-
ling the surface metrology parameters can represent a valuable asset 
as evidenced by the plethora of research studies that have sought to 
design algorithms for this purpose [1, 5, 6]. However, before such a 

control can take place, a mapping from the process conditions to 
the surface metrology variables must be found. Such a mapping has 
formed the topic of many research studies for several decades as will 
be discussed in the next section. The majority of these research stud-
ies focus on very simple mappings typically involving the creation of 
a limited list of input features from the process data. A data model 
is then found to map these features to selected surface metrology 
parameters (usually profile parameters). 

One notable example is the prediction of the surface roughness 
heights (Ra) from process conditions [5-7]. It should be noted, however, 
that these existing studies have mainly focused on predicting the 
profile parameters, and the application of modeling algorithms for 
predicting areal parameters, which are arguably more important, is 
limited [8]. The areal parameters provide a characterization for the 
full 3D surface of the manufactured part and have been shown to be 
more descriptive of the surface as well as being better related to its 
function [8]. Therefore, mappings from process conditions to areal 
parameters can provide better value for the manufacturing process. 
This research study will therefore mainly focus on the modeling of 
the areal surface metrology parameters. 

Existing research studies also typically focus on very small sub-
sets of areal parameters while neglecting the others. They also tend 
to derive coarse scale features extracted from the process data [9, 10]. 
However, as discussed in [5], many areal surface metrology variables 
can correspond to a particular function, and, as such, it is often 
imperative these areal parameters be combined in a systematic way 
for function prediction. The surface metrology variables can vary in 
a very different and sometimes unpredictable manner; an approach 
formulated for predicting one areal parameter might not be appli-
cable for predicting another areal parameter. 

As the algorithms hitherto developed have only been validated on 
one or two areal parameters, it is difficult to make a concrete state-
ment on how such modeling approaches perform across the many 
areal parameters. Consequently, validating the published algorithms 
on the other areal parameters (which may perhaps be of equal or 
more importance depending on the use of the variable) may prove 
to be problematic. 

The study in this article proposes a new framework to predict 
areal surface metrology parameters based on features extracted 
from process conditions. The proposed approach is shown not only 
to generalize across unseen data, but is also robust enough to be 
utilized for all the 24 areal surface metrology parameters on which 
the proposed approach is tested. 

To validate the developed algorithms, a full factorial experimen-
tal design was carried out to manufacture 17 steel bearing hous-
ing parts as a case study. The sparse and highly uncertain multi-
dimensional data obtained during this case study represent real 
manufacturing processes where components are manufactured 
in low volume. Therefore, the main contribution of this article is 
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the development of a modeling methodol-
ogy that can generalize to a large number 
of manufacturing variables using a limited 
quantity of data. 

The details of the experimental design 
as well as process conditions are discussed 
in Section 3. The proposed framework pres-
ents methodology that can aid the drive 
toward manufacturing automation and 
data exchange [11]. The review paper by 
[12] describes state-of-the-art in terms of 
algorithms, industry uptake, and invest-
ments across a wide-range of manufactur-
ing industries. For different materials and 
manufacturing processes, machine learn-
ing approaches, such as artificial neural 
networks, have also been developed with 
limited experimental data for predictive 
modeling of properties of manufactured 
components [13]. 

The properties of the components can be 
dictated by the properties of the material, 
mechanical or microstructural, but also 
via surface metrology parameters within a 
synergetic framework. There is a plethora 
of applied research works relating to the 
causality between process and material 
data and mechanical and microstructural 
properties, but there is little work on such 
causality with respect to surface metrology 
parameters. This holistic approach should 
improve our understanding of how the 
final properties of manufactured compo-
nents may be optimized for right-first-time 
production. 

The remainder of the article is organized as follows: Section 2 
presents a detailed literature review of existing techniques, which 
have been used for mapping process conditions to surface metrol-
ogy variables. The section details the strengths and weaknesses of 
these approaches to the overall manufacturing informatics system. 
As already mentioned, Section 3 provides a detailed description of the 
experimental procedure for which the data has been derived. Section 
4 discusses the proposed interpretable fuzzy-based machine learning 
approach for the surface metrology informatics system. Section 5 
presents and discusses the results while Section 6 provides the con-
clusion, which can be drawn from the studies conducted from the 
paper as well as providing suggestions for future research.

2 EXISTING LITERATURE
The book by Whitehouse [1] may perhaps be described as the most 
important piece of literature where the use of surface metrology in 
manufacturing for function prediction and quality control is perfect-
ly detailed. The book forms the foundation of many research studies, 
which have investigated the use of surface metrology components 
to predict manufactured components function and consequently 
to control the manufacturing process. Controlling the manufactur-
ing process is typically achieved by the manipulation of the process 
parameters. To achieve such a control framework, it is apparent that 
a model indicative of how the process parameters affect the sur-
face metrology parameters must be identified [14]. Such a mapping 
framework has been the subject of many research studies as already 
discussed in [5, 6].

Surface profile parameters account for the majority of surface 
metrology variables used for understanding the manufacturing 
chain. Of the profile parameters defined in the ISO standards [15], 
the surface height (Ra) is the most widely used because its derivation 
is simple, fast, and its meaning is widely understood by manufac-
turing technologists. For example, a high value of Ra indicates a 
visually rougher surface. Predicting the Ra accounts for the major-
ity of the surface profile predicted variable studies. Some of these 
studies include the prediction of surface roughness parameter (Ra) 
for a computer numerical con- trolled (CNC) milled surface using 
linear regression [16] and the assessment of surface roughness using 
time and frequency domain features for a polished surface [17]. In 
particular, the studies conducted in [18] have shown that the Ra 
strongly correlates with the mean and root-mean-square (RMS) of 
the vibration signals for the polishing process. 

However, one of the main limitations of the approach is that 
predicting the Ra may not be sufficient to fully characterize the 
manufacturing informatics system. This is because the Ra value 
is very simplistic and may not account for the variation across the 
surfaces [17]. One solution to this, which has been proposed in the 
literature, involves creating a distribution of Ra values, but this has 
not been widely adopted by both academia and industry perhaps 
due to the complexity involved [19]. A better and recent approach 
relates to characterizing the full surface as opposed to using profile 
parameters. This recent approach is known as the areal surface, and 
it is the main subject of this article. 

One of the most prominent studies in attempting to predict the 
areal surface parameters relates to the prediction of the Sa parameter 

Symbol 	 Name 	 Formula 	 Notes

Sa 	 Arithmetic  
	 Mean  
	 Height

Sq 	 Root Mean  
	 Square  
	 Height

Ssk 	 Skewness

Sku 	 Kurtosis

Sdq 	 Root Mean  
	 Square  
	 Gradient

Sdr 	 Developed  
	 Interfacial 
	 Area Ratio

This is defined as the arithmetic mean 
of the absolute of the ordinate values 
within a definition area (A). This 
parameter can correlate with friction 
of manufactured components

This is the root mean square value of 
the ordinate values within a definition 
area (A). Sq can relate the way light 
scattering effects from a surface.

This is useful for the measurement 
of surface symmetry about the mean 
line.

This is the quotient of the mean cube 
value of the ordinate values and the 
cube of Sq within a definition area 
(A). It measures the profile symmetry 
about the mean line.

This parameter is particularly useful in 
sealing applications.

The Sdr parameter has a direct 
correlation with surface adhesion. 
ISO 25 178 part 2 defines the Sdr with 
integrals instead of summations.

Table 1: Selected areal parameters as defined in the ISO documents. The derivations of some of these 
parameters are shown in Figure 3. It should be noted that the data is sampled uniformly along the x and y 
axes. Z(x, y) represents the measured height at location (x, y).



thermalprocessing.com   35

for a rotating machined process from process variables as included 
in [19]. The areal parameters characterize the full 3D surface and 
have been standardized in the ISO25 178 documents [20]. These docu-
ments contain a comprehensive industry standard areal parameters. 
The parameters as well as their use are shown in Table 1. Many of 
the algorithms formulated for the prediction of areal surface param-
eters have only been applied to one or two of the areal parameters 
[8]. Validation of such approaches on the parameters on which they 
have not been tested may not be feasible. This article presents a 
fuzzy modeling approach for the prediction of surface area metrol-
ogy parameters. 

The proposed approach is tested on 24 areal parameters in order 
to show the proposed approach can be generalized across the various 
surface metrology parameters. The paper in [21] provides an excel-

lent overview of the use of fuzzy models in 
areal surface metrology predictions. Fuzzy 
logic systems provide a unique modeling 
approach of leading to interpretable but 
non-linear input/output mapping when pre-
dicting the surface metrology parameters. 
Manufacturing systems are in the middle 
of a revolution where different components 
and stages of the manufacturing process are 
increasingly becoming “intelligent.” This 
intelligence stems from the fact the many 
components involved in this process are 
increasingly able to intercommunicate from 
upstream to downstream. This special abil-
ity is embedded in the concept of Industry 
4.0, which references the fourth industrial 
revolution in which machine components 

and processes are equipped with cyber-physical capabilities and 
are thus capable of tuning their process conditions in response to 
feed- back from the environment and other manufacturing condi-
tions. The promise of Industry 4.0 is well discussed in [22]. Surface 
metrology represents a key enabling component of this revolution 
as surface metrology parameters play a key part in the inspection of 
manufactured components. The surface metrology parameters can 
provide insights for online decision making in a cyber-physically 
connected system. The Ra, for example, is a design variable, and it is 
typically required to not exceed a particular limit for the manufac-
tured component to function as expected.

3 EXPERIMENTAL DESIGN
A full-factorial experimental design (see Table 2) was performed on a 
steel bearing house [22]. The CAD model of the product to be manu-
factured is shown in Figure 1a. Using a Vecstar furnace, the mate-
rial blocks (steel EN24) were heat treated to approximately 845°C 
(Figure 1b) and then quenched in oil so they can be hardened. The 
next step involved tempering at the selected design temperatures. 
Temperature gradients and variations during both heating and tem-
pering were also measured using high-temperature thermocouples. 
The surface hardness measurements of the blocks were obtained 
using a Rockwell device. The treated product was then machined 
(Figure 2) using a DMG MORI NVX 5080 3-axis machine with variable 
controlling factors to arrive at the final manufactured component. 
During the machining process, process data, such as vibration data, 
were measured along the three main axes of the work-piece. In par-
ticular, vibration data were obtained using an accelerometer sensor 
placed on the spindle, which were then logged using LabView SIGNAL 
Express Software. 

The areal surface measurements were obtained using an 
ALICONA interferometric instrument. Two surface measurements 
were obtained per part resulting in 34 measurements in total. The 
features mea sured per part are shown in Figure 1a. This instru-
ment records the height (z) at sampled locations (x, y) with uniform 
sampling and a sampling interval of 10 mm. The instrument mea-
sures the raw surface metrology data and preprocessing is needed 
to obtain the standardized surface metrology data. The procedure 
for obtaining the standardized surface metrology data is shown 
as follows.

1. Obtain the primary surface by the application of the S-Filter on 
the real surface. The S-Filter used is the Gaussian filter, and the stan-
dards recommended in the ISO 16 610-21 document [23] have been 
followed. For example, the wave- length of the S-filter is taken to be 
15 times the sampling interval (150 μm).

Figure 1: (a)CADmodel of the manufactured part. Two features were measured for the purpose of surface 
metrology analysis. Each feature labeled is associated with one or two operations, which correspond to the 
machining process component, which produced the feature. (b) Heat treatment of the steel blocks.

Figure 2: Machining process.

Table 2: Full factorial experimental design variables for five of the 17 
manufactured parts. Note that “Rec” stands for recommended setting.

Run 	 Parts	 Material	 Feed	 Spindle	 Datum
Order 		  Hardness	  	 Speed 	 Error
1 	 13 	 Hard 	 Rec 	 + 20% 	 0 mm
10 	 24 	 Soft 	 Rec 	 Rec 	 0 mm
11 	 21 	 Soft 	 + 20% 	 Rec 	 0.02 mm
15 	 6 	 Soft 	 + 20% 	 Rec 	 0 mm
17	  23 	 Hard 	 + 20% 	 Rec 	 0 mm
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2. If necessary (depending on the result 
obtained above), perform further surface 
filtering to obtain the scaled limited surface. 
It should be noted that this stage is entirely 
determined by expert knowledge.

3. Specify the evaluation area which is 
taken as five times the selected wavelength 
(750 mm).

4. Obtain the reference surface and calcu-
late the parameters as described in Figure 3.

A sample of the areal surface metrology 
measurements obtained following the pro-
cedure above is shown in Figure 4.

4 PROPOSED FUZZY MODELING 
APPROACH
Fuzzy logic represents an extension of 
bivariate logic and was introduced in 1965 
in Zadeh’s seminal paper [24]. Since then 
fuzzy logic systems have found applications 
in a variety of domains including biomedi-
cine [25], process control, manufacturing 
[26], and aerospace systems. The use of 
fuzzy systems in these applications offers 
a unique advantage of being able to model 
non-linear systems in an interpretable man-
ner. The interpretability comes from the fact 
that a fuzzy logic system is a rule-based sys-
tem, and the rules are similar to the natural 
language of humans. These rules also allow 
for the incorporation of expert knowledge, 
which can be valuable for the analysis of complex systems. Central 
to fuzzy logic systems are the fuzzy sets. 

Fuzzy sets extend conventional sets in that they can provide to 
what extent an element belongs to a particular set. Mathemetically, 
a fuzzy set (type-1), A, may be expressed as follows:

where mA(x) is the membership degree of the fuzzy set of an element 
x in the Universe of discourse X,0 < mA(x) < 1. The fuzzy logic system 
(FLS) can be considered to be a mapping from the input space (defined 
as X) to the output space (defined as Y) (Figure 5). Such a mapping 
can be formulated by the following equation: 

where  ŷ  is  output  of  the  fuzzy  logic  system,  fj(x) represents the 
degree of validity for the jth rule (for a total  number  of  c  rules) for  
an  input  x Î RN× fj(x) represents the normalized firing strength 
of a particular input in each input space. The nature of lj is what 
determines if the fuzzy system is of the Mamdani or of the Takagi 
Sugeno Kang (TSK) type. For the Mamdani type, lj represents the 
output/consequent fuzzy set of the jth rule while for the TSK type, 
lj represents a linear function (lj = ax + b).

4.1 Identifying Fuzzy Models
As discussed in the preceding section, the fuzzy model can be 
thought of as a nonlinear interpretable mapping from the input 
space to the output space. The fuzzy system is parameterized (the 
fuzzy sets can be represented by parameters) and such parameters 
can be learned from the data obtained from the system to be ana-
lyzed via fuzzy logic. There exists a plethora of approaches for identi-

fying the parameters of the fuzzy logic system such as optimization 
of the cost function via gradient descent and iterated re-weighted 
least squares [27]. As the goal of this article is to develop an approach 
that can generalize across the different areal parameters, it is imper-
ative that a robust framework be found. Consequently, the proposed 
algorithm development follows a number of steps as discussed in the 
preceding sections.

Figure 3: The process of calculating selected areal parameters. (a) Illustration of the core height (Sk). (b) 
Illustration of the material ratio at the first default point. (c) Calculation of the reduced valley height (Svk). 
(d) Important areas for calculating areal parameters: green for Vmp, black for Vmc, blue for Vvc and red for 
Vvv.

Figure 4: Surface metrology measurement of Part 1, feature B. The figure 
includes a 3 mm × 2.5 mm surface patch, which a sampling density along the 
two axis equals to 100 samples per mm. Hence sampling interval is 10 μm.

Equation 1

Equation 2
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4.2 Fuzzy Modeling Approach
The fuzzy model used here is of the Mamdani type because it can be 
shown to represent the most transparent of fuzzy models. The block 
diagram for the process of obtaining the fuzzy model from data is 
shown in Figure 6.

The first step involves the use of fuzzy c-means data clustering 
of the product space, which provides an initial good guess of the 
parameters of the fuzzy model and will later be optimized. As shown 
in [26], such an approach can help in preventing the optimization 
algorithm from being stuck in a local optima. The number of clusters 
determines the number of fuzzy rules in the trained fuzzy mod-
els. To determine the optimal number of fuzzy rules (which is the 
same as the number of clusters), a crude search was carried-out to 
find out the region where the optimal number fuzzy rules is. The 
authors found that for very large number of fuzzy rules, the algo-
rithm overfitted on the hold-out set, and this gets progressively worse 
as the complexity of the model increases. The search for the optimal 
number of fuzzy rules was thus limited to between 2 and 12. The 
second step involves determining the regularization parameter. This 
step involves defining a cost function — a penalized root mean square 
error (RMSE) defined by the following equation:

where f(X, b) represents the output of the fuzzy system, y is the vector 
representing the output data and l is a penalty term that penalizes 
for large values of the fuzzy model parameters. The value of l is 
determined via a K-fold cross validation using the following steps:

Algorithm 1: K-fold cross validation algorithm for 
determining the regularization term

1. Divide the training data set into K-folds. Note that there is a 70%-
30% split in training data to testing data. This resulted in a training 
data of 24 data points. The value of K was chosen to be 4 which means 
there were 6 data points per fold.

2. From 10-2 to 106 (on the log scale), select a particular l and train 
the fuzzy model on the three folds and test on the remaining one 
fold. The approach is repeated until when all the data folds have been 
tested. Record the l value and corresponding RMSE.

3. Zoom in on the l values and find the l values with the lowest 
error (RMSE) and repeat procedure 1-2 if necessary.

4. Select the fuzzy model with the lowest RMSE (without the pen-
alty term) and record the value of l.

It should be noted that steps 2 and 4 above involve a training 
procedure which involves finding the parameters, which minimize 
the error function as defined in Equation 3. The procedure by which 
this has been done in Algorithm 2 is based on the scaled conjugate 
gradient algorithm.

Algorithm 2: Scaled Conjugate Gradient algorithm for 
finding the optimal parameters
Given the objective function of Equation 3, the parameters of the 
fuzzy models are obtained via the scaled conjugate gradient descent 
algorithm. The fuzzy sets for both the antecedent and the consequent 
variables are assumed  to  be  defined  by Gaussian membership func-
tions with two parameters, v and s correspond 
to the center and spread of the membership function. The output of 
a Mamdani fuzzy system is given by the following equation:

where x represents the jth input for a total of n inputs and c fuzzy 
rules. The derivative of the antecedent and consequent parameters 
are given by the following equation:

where ql
ij is the lth parameter of the jth antecedent of the ith rule. 

for j = 1, 2, ¼ ,n, i = 1, 2, ¼ c, and l = v, s. For each parameter, it can be 
shown that their derivatives with respect to the center and spread of 
the membership functions can be given by the following equations:

The derivative with respect to the consequent parameter is given 
by the following equation:

where bi is the consequent parameter of the ith rule. It should be 
noted that N represents an unnormalized Gaussian function. F is 
a vector representing the firing strengths across all the rules and 1 
is a vector of ones. It is worth emphasizing that the scaled gradient 
descent algorithm was used in this article. At iteration k, the param-
eters are updated as follows:

P is the vector of parameters, a is the step size, and d is the search 
direction. yk = akdk is given as follows:

Figure 5: Fuzzy mapping block diagram.

Figure 6: Block diagram of the steps involved in obtaining the fuzzy model.

Equation 3

Equation 4

Equation 5

Equation 6

Equation 7

Equation 8

Equation 9

Equation 10
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where H is the Hessian that can be 
approximated as discussed in [27]. It is worth 
emphasizing that Equation 3 includes a loss 
function, which can be used to control the 
interpretability of the elicited fuzzy model. 
The center of sets defuzzification method 
was employed in this research, but the 
proposed approach extends easily to other 
defuzzification methods.

5 RESULTS

5.1 Data
The datasets used in this research study are 
the surface metrology data (an example is 
shown in Figure 4) and the process vibra-
tion data. The vibration dataset is a time 
series data sampled at a frequency of 10KHz. 
Sets of vibration data in the x, y, and z direc-
tions were obtained per feature in each of 
the parts. From the vibration data, feature 
extraction was performed. The features 
extracted included time and frequency 
domain features (for example mean [10], 
root mean square value [17] and the Fourier 
transform frequency components). A total of 
206 features were obtained from the vibra-
tion data. A distribution of the vibration data 
as well as selected input features shown in 
Figure 7 indicates the data is sparse and mul-
tidimensional.

The 24 areal parameters from the surface 
metrology were also obtained using an in-
house software developed by the authors. 
The procedure for deriving the parameters are as outlined in the 
ISO standard as well the studies performed in [20, 28].

It is worth emphasizing that the modeling problem is challenging 
because of the high dimensionality and sparseness of the data points. 
Specifically, there are 34 data points in all (25 training data points), 
which points to the fact that it is easy to overfit on the training data 
[26]. This phenomenon is representative of many manufacturing pro-
cesses (such as in the manufacture of aerospace components) where 
parts are manufactured in low volume. It would be interesting to 
investigate how the proposed approach performs in this challenging 
modeling problem. It should be noted that a penalized error function 
coupled with K-fold cross validation is proposed for the modelling 
problem as discussed in section IV. There is a 70%- 30% split between 
training and testing data sets. This split was performed after a ran-
dom sampling of the full data set. 

The performance metric used for evaluating the developed mod-
els is the RMSE. The 206 features were extracted from the raw vibra-
tion data. New deep learning approaches make it possible to use raw 
time-series data in the modeling problem as shown in [29]. This line 
of thought was not pursued further because this may not be feasible 
for cases of low volume manufacture such as the one considered in 
this paper.

5.2. Linear Regression Modeling
Linear regression modeling is the work-horse of modeling in manu-
facturing. To test the proposed approach on other modeling problem, 
linear regression is chosen as a benchmark so the results obtained 
from the proposed approach can be compared. The linear regression 

modeling is given by the following equation:

where X represents the design matrix and b the corresponding 
parameters. e represents a zero-mean Gaussian noise. For a sum of 
error square cost function, the solution to the optimization problem 
is given by the following equation:

It is worth noting that, as there are significantly more features 
than data points, the linear regression modeling problem will be 
overdetermined and will result in overfitting on the modeling prob-
lem. This was indeed the case when a linear model was performed 
on the training data. These results are shown in Figure 8.

As can be seen from the results of Figure 8, the linear regression 
model fits the training data perfectly but does not generalize well 
to unseen data (as can be noted form the testing data set perfor-
mance). To allow for better generalization to unseen data, the linear 
regression cost function can be penalized as given by the following 
equation:

where l is called the ridge parameter whose function is to penalize 
for large weights. As already mentioned, the penalty term (l was 
determined by K-fold cross validation) as described in Section 3. The 
penalized linear regression (ridge linear regression) results is as 
shown in Figure 9.

As can be seen from Figure 9, although the results of the testing 

Figure 7: (a) Distribution of selected input variable’s root mean square and mean (RMS) of the vibration 
data. (b) Distribution of selected input variable’s skewness and mean of the vibration data.

Figure 8: Linear regression performance on the training and testing data for a selected output variable (Sa). 
There is overfitting because the system is overdetermined.

Equation 11

Equation 12

Equation 13



thermalprocessing.com   39

datasets are more generalizing when compared with ordinary linear 
regression results, the training data set is significantly much worse. 
This is as a result of the fact that the ridge parameter is able to find 
a compromise between the best training results (in the linear sense) 
and the best validation results (in the linear sense). The results sug-
gest that a non-linear model is required to obtain a good mapping 
of the process parameters. It is for this reason that the Mamdani 
fuzzy model is first considered as discussed in Section 3. The first 
Mamdani model considered is not inclusive of any penalty term that 
has already been explained can result in overfitting of the train-
ing model. Such a result is similar to the ordinary regression result 
(shown in Figure 8). The fuzzy modeling result without any penalty 
term is shown in Figure 10.

To allow for better generalization, the same ridge linear regres-

sion training procedure (discussed in 
Section 4) is also followed to train the 
Mamdani fuzzy model. The results of the 
ridge Mamdani fuzzy system is shown in 
Figure 11. We have called this approach the 
ridge Mamdani fuzzy modelling approach to 
emphasize its capability to penalize for large 
fuzzy weights in order to improve general-
ization performance.

As can be seen in Figure 11, the ridge 
fuzzy modeling framework provides a much-
improved performance and is able to map 
the process features to the surface metrol-
ogy parameters. The result shown in Figure 
11 can be replicated across all the other 
areal surface metrology parameter, which 
indicates the proposed modeling method-
ology predicts with accuracy regardless of 
the parameter of interest. Tables 3 and 4 
respectively show the performances of the 
linear/ridge regression method and the pro-
posed fuzzy approach in predicting 24 areal 
parameters. The results from these tables 
indicate the proposed approach is able to 
generalize across different areal parameters 
and provides consistent as well as robust 
modelling results.

As can be observed from Tables 3 and 4, 
for the ordinary linear and fuzzy models 
(without penalizing the weights), the mod-
els overfit significantly on the training data 
set and perform badly on the testing data 
set across all the 24 areal parameters. The 
training error is close to zero and this fact 
is corroborated by Figures 8 and 10. For ridge 
linear and fuzzy models, the results are bet-
ter (improved modeling accuracy on the test 
data). For example, if one considers the Sa 
para- meter in the two tables mentioned, 
it can be seen that the training RMSE for 
both the ordinary linear and fuzzy models 
are negligible (2e-15 and 3e-15 respectively). 
The testing performance is respectively 
0.531 and 0.233. Although the fuzzy model is 
better than the lin- ear regression approach 
(for the ordinary model), there is overfitting 
on the training data set. The performance is 
much improved when using the proposed 

ridge approach. For example, the ridge ordinary fuzzy model has a 
training RMSE of 0.034 and a testing RMSE of 0.033 (shown in Figure 
11). The ridge approach is able to provide a balance in the accuracy 
of training and testing results.

It should be noted that using the ridge approach on the testing 
data set, the fuzzy model is able to provide improvement on the 
modeling accuracy as compared to the linear modeling approach 
by approximately 75%.

6. CONCLUSION
This article has presented a new framework based on the ridge 
Mamdani fuzzy logic system for the mapping of process features to 
areal surface metrology parameters. The proposed approach repre-
sents a non-linear but interpretable solution to the manufacturing 

Figure 9: Penalized linear regression results.

Figure 10: Mamdani-based fuzzy logic modeling results.

Figure 11: Ridge Fuzzy Modeling results.

http://thermalprocessing.com


40    DECEMBER 2021

informatics modeling problem. The main contribution of this article 
is the development of a modeling solution that provides consistent 
accuracy across all the 24 areal parameters on which the results were 
tested. This is the first time such a framework has been validated 
across different areal parameters even in the face of a challenging, 
nonlinear, sparse, multi-dimensional modeling task. In particular, 
the validation results of the proposed strategy contrast existing areal 
parameters modeling methods where either results do not general-
ize across many areal parameters or validation results are difficult 
to obtain. The proposed approach may benefit from adding an extra 
layer of inherent in manufacturing systems can be adequately mod-
eled as well as understood. This will be the main focus of future 
research studies.
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	 Output 		  Linear Model		
 		  Training (RMSE)	  	 Testing (RMSE) 	
		  ORDINARY 	 RIDGED 	 ORDINARY 	 RIDGED

	 Sa (μm) 	 2e-15 	 0.070 	 0.531 	 0.058
	 S5z (μm)	 9e-14 	 5.62 	 15.47 	 6.97
	 Std (deg)	 1.7e-13 	 9.53 	 82.97 	 29.87
	 Smr2 (%) 	 3.5e-14 	 1.72 	 7.57 	 2.04
	 Smr1 (%)	 1.6e-13	 3.29	 11.26	 2.06
	 Svk (μm)	 7.52e-14	 0.236	 1.013	 0.124
	 Sk (μm)	 9.38e-13	 2.938	 19.16	 2.963
	 Spk (μm)	 5.87e-14	 0.357	 0.907	 0.426
	Vvv (μm3/mm2)	 3.99e-09	 24148	 183896	 45 020
	Vvc (μm3/mm2)	 4.13e-08	 200 705	 803476	 165 007
	Vmc (μm3/mm2)	 2.56e-08	 108 141	 342 019	 83579
	Vmp (μm3/mm2)	 2.56e-09	 20378	 87845	 26271
	 Sdr (%)	 7.88e-15	 0.0514	 0.32129	 0.033	 43
	 Ssc (1/μm)	 5.05e-16	 0.00137	 0.009 20	 0.000 92
	 Sdq	 3.27e-15	 0.01	 0.06993	 0.00757
	 Sal (mm)	 3.68e-15	 0.0246	 0.0712	 0.0361
	 Str	 1.07e-14	 0.1842	 0.30599	 0.1697
	 Sds (1/mm2)	 5.42e-11	 80.319	 342	 84.70
	 Sz (μm)	 8.42e-13	 7.1029	 43.5086	 8.7398
	 Sv (μm)	 6.13-13	 6.0068	 58.2909	 4.6297
	 Sp (μm)	 2.93e-13 	 3.2261 	 20.5911 	 7.7376
	 Sku 	 4.20e-12 	 93.103 	 468.96 	 75.193
	 Ssk 	 1.34e-13 	 3.7123 	 33.302 	 4.8714
	 Sq (μm) 	 3.98e-14 	 0.1708 	 1.0248 	 0.1431

	 Output 		  Fuzzy Model		
 		  Training (RMSE)	  	 Testing (RMSE) 	
		  ORDINARY 	 RIDGED 	 ORDINARY 	 RIDGED

	 Sa (μm) 	 3e-15 	 0.034 	 0.233 	 0.033
	 S5z (μm) 	 11e-14 	 2.98 	 17.21 	 3.24
	 Std (deg) 	 1.8e-15 	 12.13 	 93.07 1	 3.80
	 Smr2 (%) 	 3.5e-14 	 1.34 	 6.54 	 1.86
	 Smr1 (%) 	 6.8e-14 	 2.12 	 12.08 	 2.86
	 Svk (μm) 	 2.88e-15 	 0.227314 	 0.72936 	 0.0409
	 Sk (μm) 	 13.59e-14 	 2.828 	 1.801 	 1.937
	 Spk (μm) 	 2.25e-15 	 0.343353 	 0.653594 	 0.1401
	Vvv (μm3/mm2) 	 1.53e-10 	 23243.37 	 132405 	 14780.19
	Vvc (μμm3/mm2) 	 1.58e-09 	 193179.4 	 578503 	 54171.99
	Vmc (μm3/mm2) 	 9.82e-10 	 104085.7 	 246254.1 	 27439.17
	Vmp (μm3/mm2) 	 9.82e-11 	 19614.5 	 63249.06 	 25914.31
	 Sdr (%) 	 3.02e-16 	 0.0494 	 0.2313 	 0.0329
	 Ssc (1/μm) 	 1.94e-17 	 0.001323 	 0.00662 	 0.000908
	 Sdq 	 1.25e-16 	 0.009992 	 0.05035 	 0.007471
	 Sal (mm) 	 1.41e-16 	 0.023636 	 0.0044 	 0.0355
	 Str 	 4.11e-16 	 0.177273 	 0.0190 	 0.167451
	 Sds (1/mm2) 	 2.08e-12 	 77.307 	 21.256 1	 9.482
	 Sz (μm) 	 3.22e-14 	 6.8365 	 2.7018 	 2.010
	 Sv (μm) 	 2.35e-14 	 5.785 	 3.6198 	 1.0648
	 Sp (μm) 	 1.12e-14 	 3.101 	 1.2787 	 1.7796
	 Sku 	 1.61e-13 	 89.61 	 29.122 	 17.294
	 Ssk 	 5.13e-15 	 3.573 	 2.0680 	 1.1204
	 Sq (μm) 	 1.52e-15 	 0.1644 	 0.06364 	 0.0329

Table 3: Linear model results in predicting 24 areal parameter values. Table 4: Fuzzy model results in predicting 24 areal parameter values.
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