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Computerized Design of Straight Bevel Gears 
with Optimized Profi les for Forging, Molding, or 
3D Printing
By Alfonso Fuentes-Aznar, Ignacio Gonzalez-Perez, and Harish K. Pasapula

The computerized generation of straight bevel gears with spherical involute profi les is developed and the 
advantages of its application investigated. Possible microgeometry modifi cations of the gear tooth surfaces 
are proposed to provide stable contact patterns when errors of alignment occur.  

Straight-tooth bevel gears are the simplest type 
of bevel gears that can be used for power trans-
mission between intersecting shafts. They are 
commonly referred to as straight bevel gears, 
for brevity. Shafts for power transmission with 
straight bevel gears are usually mounted at a 
shaft angle of 90 degrees but can be designed 
to work at a wide range of shaft angles. They 

operate with efficiency around 98 percent or 
even better. They are widely applied in low-
speed applications or static loading conditions 
[1]. The most traditional application of straight 
bevel gears is in differential drives in which the 
speed is low and the load type is mainly static.

Straight bevel gears are conical. Their teeth 
are tapered in both tooth thickness and tooth 

height [2]. In one end, the tooth height is 
large, while in the other end, it is small. These 
gears impose both radial and thrust loads on 
their bearings.

The great pioneer in the bevel gear field was 
William Gleason, founder of The Gleason 
Works in 1865. In 1874, William Gleason 
invented the first bevel gear planer. That 
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development was the first piece of technology 
that allowed the bevel gear industry to be 
created and opened vast new possibilities for 
the transmission of motive power. However, 
the first machines to cut straight bevel gears 
were difficult to set up and time-consum-
ing while cutting gears [3]. Revacycle and 
Coniflex cutting methods were developed 
to improve the efficiency of manufacturing 
straight bevel gears.

Still, in many of today's applications of 
straight bevel gears, forging or molding manu-
facturers of bevel gears imitate cut surfaces of 
Coniflex and Revacycle gears, which is mainly 
a legacy of the time when forging manufacturers 
were trying to duplicate cut gears to prove that 
these gears can also be near-net forged or plastic 
molded [1]. However, there is no limitation on 
the geometry that those methods can use as 
objective geometries. These methods can use 
potentially any geometry for the gear tooth sur-
faces because molds are manufactured point by 
point. This fact opens new possibilities to look 
for new theoretical geometries for bevel gears.

The involute profile is the most common-
ly used tooth profile for cylindrical gears. 
However, for bevel gears, there is no standard 

reference profile. In this work, the spherical involute profile, considered the counterpart 
profile of the involute for bevel gears, will be derived and applied for straight-tooth bevel 
gears. The computerized generation of straight bevel gears with spherical involute profiles will 
be developed and the advantages of its application investigated. Spherical involute profiles 
might be applied for bevel gears manufactured by forging, molding, or 3D printing. The 
spherical involute profile is expected to give the best conditions of meshing and contact for 
straight bevel gears. Possible microgeometry modifications of the gear tooth surfaces also will 
be investigated in order to provide stable contact patterns when errors of alignment occur.

THE SPHERICAL INVOLUTE PROFILE
The parametric equations defining the spheri-
cal involute profile can be obtained by using 
two approaches: One is based on spherical 
trigonometry and will be referred to as the 
direct definition method. The other method 
is based on coordinate transformation and 
will be referred to as the indirect definition 
of the spherical involute profile. 

Direct Definition
The direct definition of the spherical involute 
is based on spherical trigonometry and follows 
the derivations proposed by Al-Daccak et al. [4] 
and Kolivand et al. [1]. Other works of reference 
are [5] and [6]. In [5], a practical application of the spherical involute surface to forged straight 
bevel gears is provided. In [6], the geometrical characteristics and kinematic behavior of spherical 
involute gears are explained.

The planar involute of a circle is defined as the curve traced by a point P on a taut chord 
that unwraps from a circle, constituting the base circle of the involute. Figure 1 shows the 
basic definition of the involute curve and its related design parameters. Point P in Figure 1 
is a point of an involute curve traced while it unwraps from base circle of radius rb. From 
Figure 1:

  Equation 1

so that:

  Equation 2

Equation 2 is the fundamental equation for the planar involute curve. Angle θ is known as the 
involute polar angle. Angle ε in Figure 1 is the involute roll angle, which is the angle whose arc 
on the base circle of radius unity equals the tangent of angle φ at a selected point on the involute. 
For the planar involute, angle φ equals the pressure angle when point P lies on the pitch circle.

The spherical involute is the 3D counterpart of the planar involute of a circle. Similar to the 
definition of the planar involute, the spherical involute is defined as a 3D curve traced by a 
point P on a taut chord  unwrapping from base circle of radius rb that lies on sphere S with 
origin at Os and radius r0 (see Figure 2). Point P in Figure 2 is a point of an involute curve 
traced while it unwraps from base circle of radius rb, obtained as the intersection between the 
base cone and the sphere of radius r0. The spherical involute is traced on the surface of the 
sphere S while point P unwraps over it from the base circle. Therefore, the arc length of the 
great circle  is equal to the arc length of base circle, which is , and according to this:

  Equation 3

Here, similar to the definitions for the planar involute curve, angle θ is the involute polar 
angle, and angle ε = (φ + θ) is the involute roll angle. Simplifying Equation 3:

  Equation 4

Considering again in Equation 4 that ε = (φ + θ), and solving for θ, we obtain:

Figure 1: Basic definition of the planar involute profile
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Equation 5

that can be considered as the function of the spherical involute. The 
following derivations will allow us to get angle ϕ as a function of 
angles gb and φ.

According to the principles of spherical trigonometry, arcs are 
represented by their angles [7]. Therefore, arcs , , and  can 
be represented by their angles ϕ, gb, and γ, respectively. By applying 
the law of cosines to the right spherical triangle OMP [7], the fol-
lowing relations can be derived:

	 		
Equation 6

	 	 Equation 7

Similarly, by applying the spherical law of sine to the right angle 
spherical triangle OMP [7], additional relations can be obtained:

	 	 Equation 8

that yields the following equation for sin γ,

	
	 Equation 9

Substituting for cos γ and sin γ in Equation 7, according to Equations 
6 and 9, we obtain:

	 	 Equation 10

Upon rearranging Equation 10 and collecting terms, we obtain the 
following equation for angle ϕ as a function of angles gb and φ, 
namely:

	 	 Equation 11

Using Equation 4 into Equation 11, we obtain:

	 	 Equation 12

which can be considered the basic equation defining the spherical 

involute. If we substitute back ε = (φ + θ) and rearrange terms, 
we have:

	 	 Equation 13

Equation 13, similarly to Equation 5, represents the spherical 
involute function, relating the polar angle θ with the azimuthal 
angle φ of point P by means of the base cone angle gb. This equa-
tion shows similarity with Equation 2, which defines the planar 
involute function.

In order to get the curve traced by point P on the reference sphere, 
the coordinates of point P are needed. The coordinates of point P 
in coordinate system S1 (x1, y1, z1) can be derived as a function of 
angle γ (see Figure 2). Taking the tangent of both terms of Equation 
4, we have:

	 	 Equation 14

The tangent of ϕ can be obtained by using the values of sin ϕ and 
cos ϕ from Equations 9 and 6, namely:

	 	 Equation 15

	 	 Equation 16

so that:

	
	

Equation 17

Equalizing Equations 14 and 17, the following equation can be obtained:

	 	 Equation 18

Position vector of point P in coordinate system S1 (x1, y1, z1) (Figure 
2) is given by:

	 	 Equation 19

The whole spherical involute profile can be drawn in coordinate 
system So (xo, yo, zo) by rotating coordinate system S1 (x1, y1, z1), 
around axis z1 in clockwise direction an angle θ (Figure 2), so that:

	 	 Equation 20

Equation 20 will represent the right side profile of the straight bevel 
gear tooth surface. The left side profile of the straight bevel gear tooth 
surface can be obtained by rotating coordinate system S1 (x1, y1, z1), 
around axis z1 in counterclockwise direction an angle θ, namely:

	 	 Equation 21

Indirect Definition
The indirect method is based on coordinate transformation and fol-
lows the works by Figliolini et al. [8] and Lee et al. [9]. By compar-

Figure 2: Schematic representation of the spherical involute
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ing the direct and indirect approaches, a good insight view of both 
approaches is obtained.

Figure 3 shows the schematic representation of the generation of the 
spherical involute profile using the coordinate transformation method. 
A spherical involute curve can be traced by a point P of the great circle 
C of the fundamental sphere S during the pure-rolling motion of its disk 
plane Π on the base cone of the bevel gear (Figure 3). By using coordinate 
transformation from coordinate system So (xo, yo, zo), in which the point 
P is defined, to coordinate system S3 (x3, y3, z3) which axis y3 is aligned 
with , where point Q represents the origin of the involute, lying on 
the base circle, the spherical involute profile can be obtained.

Point P is defined in coordinate system So (xo, yo, zo), which axis 
zo passes through point P, as follows:

	 	 Equation 22

where:
r0 is the radius of the sphere in which the spherical involute profile 

is going to be traced.
The coordinate transformation matrices from coordinate system So (xo, 

yo, zo) to coordinate system S3 (x3, y3, z3) are written in the following:

	 	  
 

Equation 23

Notation “RotationCW(y0,ϕ)” means that the transformation matrix 
corresponds to a rotation of the coordinate system in clockwise direc-
tion (CW) around axis y0 an angle ϕ. Similarly:

	 	  
 

Equation 24

	 	  
 
 
 
 
 

Equation 25

	
	
 

Equation 26

By applying the fundamental equation for pure rolling of disk plane Π 
on the base cone, given by Equation 4, and written here again for clarity:

	 	 Equation 27

together with Equation 26, a point P on the involute will be perfectly 
defined in coordinate system S3 (x3, y3, z3) for any given angle ε. We 
recall that gb is the cone base angle that will be obtained directly from 
the initial design data. Equation 26 gives the coordinates of the right 
side of the spherical involute profile of the gear tooth surfaces at the 
sphere of radius r0. To obtain the left side profile, Equations 23 to 
25 should be modified accordingly.

Determination of the Normal Vector
One advantage of the indirect method of determination of the spheri-
cal involute is that the normal and tangent vectors to the tooth profile 
can be derived easily. Determination of the normal to the gear tooth 
surfaces will be needed to perform tooth contact analysis. Figure 3 
shows the unit normal and unit tangent vectors in coordinate system 
S0. The unit normal in coordinate system S0 is given by:

	 	 Equation 28

and the unit tangent vector to the spherical involute profile at point P:

	

	 Equation 29

Normal and tangent vectors to the spherical involute profile in coor-
dinate system S3 (x3, y3, z3) are obtained by:

	 	 Equation 30

	 	 Equation 31

We recall that angles ε and ϕ are related by Equation 27, representing 
the condition of pure rolling of disk plane Π on the base cone. Matrices 
Lij are 3x3 submatrices of the corresponding matrix Mij, obtained by 
eliminating the last row and the last column. This results from the 
fact that the vector components (projections on coordinate axes) do 
not depend on the location of the origin of the coordinate system [10].

DEFINITION OF THE SPHERICAL BEVEL GEAR  
TOOTH SURFACES
Gear Tooth Thickness
The tooth thickness tp for the to-be-generated bevel gear is considered 
as given. The standard tooth thickness is obtained by considering 

Figure 3: Schematic representation of the generation of the spherical involute profile 
using the coordinate transformation method
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half of the angular pitch, namely:

	 	 Equation 32

where:
N is the number of teeth of the gear.

The required backlash is considered modifying tp accordingly. Figure 
4 shows the additional coordinate transformation to obtain the involute 
profile in a coordinate system aligned with the center line of the gear tooth.

The transformation for the right side of the tooth profile is:

	 	  
 

Equation 33

where:
ξp is equal to (tp/2)+θp as shown in Figure 4.
Angle θp is the polar angle when point P lies on the pitch cone. 

Similarly, for the left side, the coordinate transformation will be:

	 	  
 

Equation 34

Determination of the Polar Angle at the Pitch Cone
The polar angle at the pitch cone, qp, can be determined by Equation 
13, which expresses the polar angle θ as a function of angles gb and φ. 
For the planar involute profile, the azimuthal angle φ is equal to the 
pressure angle when P lies on the pitch cylinder. However, that statement 
cannot be extrapolated to the case of spherical gear when point P lies 
on the pitch cone. According to previous derivations (see Equation 11):

	 	 Equation 35

Also, according to previous derivations (see Equation 17):

	 	 Equation 36

where γ = gp and φ = φp when P lies on the pitch cone. Equalizing 
the previous two equations:

	 	 Equation 37

	 	 Equation 38

	 	 Equation 39

	 	 Equation 40

Equation 40 allows the azimuthal angle φp for point P lying on the 
pitch cone to be determined as a function of the base cone angle gb 
and the pitch angle gp. Once the azimuthal φp is known, the polar 
angle at the pitch cone can be obtained by using Equation 13, written 
here again for clarity, wherein φ = φp.

	 	 Equation 41

Determination of the Base Cone Angle
Figure 5 shows the pinion and the wheel of a spherical gear set in 
contact at point P0 located at the pitch cone. Subindex 1 refers to the 
pinion, and subindex 2 refers to the wheel. However, the relations 
derived here are valid for pinion and wheel, and the corresponding 
subindexes will not be included. Applying the spherical law of sine 
to the right angle spherical triangle O1MP0 [7], the following rela-
tions can be obtained:

	 	 Equation 42

Considering that sin(90°− α) = cos α and sin 90° = 1:

	 	  
Equation 43

where α is the pressure angle.

Figure 4: Toward determination of the bevel gear tooth thickness

Figure 5: Toward determination of base cone angles
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The Spherical Involute Bevel Gear Tooth Surfaces
Figure 6 shows the gear tooth surface generated from the spherical 
involute profile traced on the outer reference sphere. Points on the 
spherical involute profile are projected toward the center of the sphere, 
and in this way, the gear tooth surfaces are generated.

The left side gear tooth surface, according to Equation 21, is given 
in terms of γ and θ as:

	 	 Equation 44

where:
ρ is the radius of the sphere in which the point lies
γ is the zenith angle that can be determined by Equation 18
Radius ρ will vary between the inner pitch cone distance Ai and 
the outer pitch cone distance A0. The outer pitch cone distance is 
obtained from the pitch radius and pitch angle as:

	 	 Equation 45

where:
m is the module
N is the number of teeth
gp is the pitch angle of the gear
The inner cone distance Ai is obtained as:

	 	 Equation 46

where: Fw is the face width of the bevel gear, usually equal approxi-
mately to one-third of the outer pitch cone distance A0.

Face and Root Cone Angles
For spherical involute straight bevel gears, the addendum and deden-

dum coefficients will be used for determination of the face and root 
cone angles. The addendum coefficient is denoted here as ka and the 
dedendum coefficient as kd. Those coefficients will determine the 
addendum and dedendum heights at the outer section of the gear 
tooth surface by multiplying those values by the module of the gear.

According to Figure 7, the face cone angle gf of the spherical involute 
bevel gear will be determined by:

	 	 Equation 47

Similarly, the root cone angle gr is given by:

	 	 Equation 48

where:
N is the number of teeth of the gear
gp is the pitch angle
ka is the addendum coefficient, usually equal to 1
kd is the dedendum coefficient, usually equal to 1.25

MODIFIED GEOMETRY FOR LOCALIZATION OF CONTACT
As mentioned before, the indirect definition of the spherical involute 
profile allows the gear tooth surfaces, their normal, and derivatives 
to be determined. Based on the indirect definition of the spherical 
involute profile, microgeometry modifications can be applied to the 
gear tooth surfaces for localization of contact and predesign of a 
parabolic function of transmission errors. The proposed gear tooth 
surface modification is based on changing angle ϕ in the coordinate 
transformation matrix given by Equation 23 by modified angle ϕ' 
as follows:

	 	 Equation 49

where:
ap is the parabola coefficient for profile crowning
al is the parabola coefficient for longitudinal crowning
Coefficient ap influences the maximum level of transmission errors. 
Coefficient al influences the localization of contact. Algorithms to 
find those coefficients based on the desired level of transmission errors 
and percentage of face width for contact patterns might be imple-
mented based, for example, on the secant method or the Newton-
Raphson algorithm. In this way, those parameters will be determined 
according to the desired conditions of meshing and contact.

Figure 6: Gear tooth surface generated from the spherical involute profile at the 
outer reference sphere

Figure 7: Toward determination of the addendum and dedendum angles
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TOOTH CONTACT ANALYSIS OF SPHERICAL  
INVOLUTE BEVEL GEARS
Computerized simulation of meshing and contact is based on the 
application of an enhanced algorithm for tooth contact analysis 
(TCA) and directed to the determination of the contact pattern and 
function of transmission errors.

The proposed enhanced algorithm for TCA is based on a rigid 
body hypothesis of contact of mating surfaces. Consequently, no 
elastic tooth deformation is taken into account for contact pattern 
determination. Basically, contact path determination is based on 
the ideas presented in Sheveleva’s work [11], according to which the 
relative position between pairs of contacting tooth surfaces is taken 
into account and the rotation of one of the members of the gear 
set is determined until contact is reached. Then, the contact pat-
tern is determined, considering the locus of those points, which are 
positioned a relative distance between surfaces in contact given by a 
virtual marking compound thickness, usually equal to 0.0065 mm. 
Essentially, the described TCA algorithm is independent of the type of 
bearing contact between mating surfaces (point, line, or edge contact), 
does not require the solution of any system of nonlinear equations, 
and takes into account the effect of adjacent pairs of meshing teeth 
on the contact pattern.

The errors of alignment considered for simulation of meshing and 
contact are: 
•	ΔA1 as the axial displacement of the pinion (Figure 8a)
•	∆A2 as the axial displacement of the wheel (Figure 8b)
•	DΣ as the shaft angle error (Figure 8c)
•	∆Ε as the minimum distance between axes (Figure 8d)

FINITE ELEMENT ANALYSIS
The finite element method has been used to perform stress analysis. 
Finite element models comprising five pairs of contacting teeth have 
been employed to avoid influence of the boundary conditions on 
the results. The model size consists of 190610 elements and 232352 
nodes. Figure 9 shows the finite element model of a spherical involute 
straight bevel gear set. Gear active tooth surfaces have been defined 
as master surfaces, while pinion active tooth surfaces have been 
defined as slave surfaces. Three-dimensional solid elements of type 
C3D8I [12] have been used, being hexahedral first-order elements 
enhanced by incompatible deformation modes in order to improve 

their bending behavior. Pinion and gear material is steel defined with 
an elastic modulus of 210 GPa and Poisson ratio of 0.3.

NUMERICAL EXAMPLE
Table 1 shows the general design parameters of a spherical straight 
bevel gear set that has been used for testing the proposed geo-
metrical approach.

Firstly, Figure 10 shows the contact pattern and function of 
transmission errors for the case where pinion and gear are perfectly 
aligned. As expected, the contact pattern covers the whole active tooth 
surfaces of the pinion and gear, and there are no transmission errors. 
In this case, pinion and wheel are in lineal contact. This geometry 
is the perfect candidate for a plastic gear where the contact stresses 
have to be considerably reduced.

Bevel gear drives with intersecting axes are sensitive to changes of the 
minimum distance between axes ∆Ε. Figure 11 shows the contact 
pattern and function of transmission errors for the case where the 
minimum distance between the axis of the pinion and wheel pinion 
is ∆Ε = 0.075 mm. Although transmission errors are kept low, the 
contact pattern is shifted to the edge of the tooth surface profile, 
causing high contact stresses and contributing to the premature 
failure of the gear drive.

Figure 12 shows the bevel gear drive under an error of alignment ∆Σ 
=2 degrees, which is a huge error for a gear drive, and Figure 13 shows 
the contact pattern and function of transmission errors for this case. 
As shown in Figure 13, the gear drive keeps the lineal contact between 
pinion and wheel tooth surfaces, and the function of transmission 
errors is kept equal to zero. Similar to the case of involute cylindrical 
gears that are not sensitive to center distance error, spherical involute 

Figure 8: Errors of alignment for simulation of meshing and contact in spherical involute 
bevel gears: (a) axial displacement of the pinion ∆A1, (b) axial displacement of the 
wheel ∆A2, (c) shaft angle error ∆Σ, and (d) minimum distance between axes ∆E

Figure 9: Finite element model of a spherical involute bevel gear with five pairs of 
contacting teeth

Table 1: General design parameters of the analyzed spherical involute straight bevel gear
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Figure 10: Contact pattern on (a) the pinion tooth surface, (b) wheel tooth surface 
and (c) function of transmission errors under aligned conditions

Figure 11: Contact pattern on (a) the pinion tooth surface, (b) wheel tooth surface, 
and (c) function of transmission errors for an error of alignment ∆Ε = 0.075 mm

Figure 12: 3D representation of the gear drive under a shaft angle  
error ∆Σ = 2 degrees

bevel gears are not sensitive to changes in the shaft angle. The limits 
on changes on the shaft angles are set by the conditions of having 
positive backlash and a contact ratio higher than 1.

Application of surface modifications according to Equation 49 
allows localizing the bearing contact and predesigning a parabolic 
function of transmission error to minimize the loaded function of 
transmission errors and provide a low level of noise and vibration of 
the gear drive. The optimized coefficients for profile crowning ap 
and longitudinal crowning al in Equation 49 are ap = 0.01 and al = 
0.000001. Considering these values, the contact pattern and function 
of transmission errors shown in Figure 14 are obtained. This contact 
pattern is good for metal gears because it provides localized contact 
and a predesigned parabolic function of transmission errors. Profile 
crowning also helps to provide a smooth procedure of loading and 
unloading of the gear tooth surfaces in mesh.

Figure 15 shows the contact patterns and function of transmission 
errors for the case of geometry modification and the influence of an 
error of alignment ∆Ε = 0.075 mm. The contact path is still inside 
the active tooth surface, avoiding, in this way possible, high stresses 

Figure 14: Contact pattern on (a) the pinion tooth surface, (b) wheel tooth surface, 
and (c) function of transmission errors for modified geometry of spherical involute 
gears under aligned conditions

Figure 13: Contact pattern on (a) the pinion tooth surface, (b) wheel tooth surface, 
and (c) function of transmission errors for non-modified geometry of spherical 
involute gears under a shaft angle error ∆Σ = 2 degrees
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due to contacts all over the edge of the sur-
faces. Finite element analysis will give more 
information on the mechanical behavior of 
all cases of design analyzed.

A torque of 500 Nm has been considered 
for stress analysis. The previous four cases 
studied from the TCA point-of-view will be 
compared from the stress analysis point-of-
view. The four cases of design are summa-
rized in Table 2.

Figure 16 shows the evolution of maxi-
mum contact stresses on (a) the pinion and 
(b) the wheel tooth surfaces along two cycles 
of meshing for all cases shown in Table 2. 
The lowest contact stresses are obtained for 
Case 1 where no surface modifications and 
no errors of alignment are being consid-
ered. However, when errors of alignment 
occur and no surface modifications are pro-
vided (Case 2), contact stresses are high, 
and the failure of the gear drive may occur. 
Modification of the surfaces to localize the 
bearing contact slightly increment contact 
stresses along the cycle of meshing (Case 
3) with respect to the case with no surface 
modification, but when errors of alignment 
occur (Case 4), contact stresses only experi-
ence a slight increase (see Figure 16). Here, 
all finite element models have been kept with 
the same number of elements and boundary 
conditions for all cases analyzed to can-
cel those errors, physical and numerical, 
associated with the finite element method 
among the considered cases of design and 
thus allowing the focus on the difference 
of stress levels.

Figure 17 shows the evolution of bending 
stresses in the fillet of the pinion and wheel 
tooth surfaces along a cycle of meshing for 
all cases shown in Table 2. Again, the lower 
bending stresses are obtained for Case 1 with 
lineal contact and no errors of alignment. 
Higher bending stresses are obtained for Case 
2 with lineal contact (no surface modifica-
tion) and errors of alignment. Cases 3 and 4 
show higher bending stresses than for Case 
1 but always smaller stresses than Case 2, 
demonstrating that modification of geometry 
contributes effectively to making the gear 
drive not sensitive to errors of alignment and 
keeping the stresses low.

CONCLUSIONS
Based on the performed research work, the 
following conclusions can be drawn:
•	The spherical involute profile, when con-

sidered as reference geometry for straight 
bevel gears, is providing excellent condi-
tions of meshing and contact for plastic 
gears because it provides lineal contact 

between gear tooth surfaces and contrib-
utes to reduce contact stresses. Moreover, 
there are no transmission errors during the 
action of meshing.

•	Straight bevel gears with spherical involute 
are not sensitive to changes in the shaft 
angle. The limits on variations of the shaft 
angle are set by the conditions of having 
positive backlash and a contact ratio higher 
than 1.

•	An efficient way to incorporate microge-
ometry modifications into the design of 
spherical involute bevel gears has been 
proposed. When applied, microgeometry 
modifications, parabolic functions of trans-
mission errors, can be predesigned and the 
contact localized, providing good condi-
tions of meshing under the presence of 
errors of alignment. 
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Figure 16: Evolution of maximum contact stresses on the pinion and wheel tooth surfaces along two cycles of meshing

Figure 17: Evolution of bending stresses in the fillet of the pinion and wheel tooth surfaces
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